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The most elementary structures of turbulence, i.e., vortex tubes, are studied using velocity data obtained in
a laboratory experiment for boundary layers with Reynolds numbers Rel=295–1258. We conduct conditional
averaging for enhancements of a small-scale velocity increment and obtain the typical velocity profile for
vortex tubes. Their radii are of the order of the Kolmogorov length. Their circulation velocities are of the order
of the root-mean-square velocity fluctuation. We also obtain the distribution of the interval between successive
enhancements of the velocity increment as the measure of the spatial distribution of vortex tubes. They tend to
cluster together below about the integral length and more significantly below about the Taylor microscale.
These properties are independent of the Reynolds number and are hence expected to be universal.
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I. INTRODUCTION

Turbulence contains vortex tubes as the most elementary
structures[1–4]. Regions of strong vorticity are organized
into tubes. The energy dissipation is significant around them.
They occupy a small fraction of the volume and are embed-
ded in the background flow which is random and of large
scales. Their existence has been established at microscale
Reynolds numbers Rel&2000, by seeding a turbulent liquid
with gas bubbles and thereby visualizing regions of low pres-
sure that are associated with strong vorticity[5–8].

Direct numerical simulations[4,9–11] have derived basic
parameters of vortex tubes at low Reynolds numbers Rel

&200. The radii are of the order of the Kolmogorov length
h. The total lengths are of the order of the integral lengthL.
The circulation velocities are of the order of the root-mean-
square velocity fluctuationku2l1/2 or the Kolmogorov veloc-
ity uK. Herek·l denotes an average. The lifetimes are of the
order of the large-eddy turnover timeL / ku2l1/2.

The universality of these tube parameters has not been
established because their behavior at high Reynolds numbers
has not been known. It is difficult to conduct a direct numeri-
cal simulation at Rel*200 [12]. Bubble visualization does
not provide sufficient information[13]. We accordingly use
velocity fields of laboratory turbulence at high Reynolds
numbers to study some of the tube parameters. The velocity
field is intermittent at small scales. A small-scale velocity
variation is enhanced at the positions of vortex tubes
[6,14–19].

There are several possible configurations for laboratory
experiments. Although the most popular configuration is iso-
tropic grid turbulence, its Reynolds number is not high[18].
We instead use rough-wall boundary-layer turbulence. The
highest Reynolds number achieved in our experiment is
Rel=1258, which exceeds those in almost all the previous
studies for vortex tubes in the velocity field[14].

Using a probe suspended in the flow, we obtained a one-
dimensional cut of the velocity field. We measured not only
the velocity component in the mean-flow direction but also
the component that is perpendicular to the mean-flow direc-
tion. The latter component is suited to detecting circulation
flows such as those associated with vortex tubes[15–19].

The experiment is described in Sec. II. We present a
model for vortex tubes in Sec. III. From the experimental
data, the typical velocity profile for vortex tubes is extracted
and its radius and circulation velocity are obtained in Sec. IV.
The spatial distribution of vortex tubes is obtained in Sec. V.
The dependences of these tube parameters on the Reynolds
number are studied in Sec. VI. We conclude with remarks in
Sec. VII.

II. EXPERIMENT

The experiment was done in a wind tunnel of the Meteo-
rological Research Institute. We use the coordinatesx, y, and
z in the streamwise, spanwise, and floor-normal directions.
The corresponding wind velocities areu, v, andw. The ori-
gin x=y=z=0 is taken on the tunnel floor at the entrance to
the test section. Its size wasdx=18 m, dy=3 m, and dz
=2 m. Over the entire floor of the test section, we placed
blocks as roughness elements. Their size wasdx=6 cm, dy
=21 cm, anddz=11 cm. The spacing of adjacent blocks was
dx=dy=0.5 m. We set the incoming-wind velocity to beUi
=2, 4, 8, 12, 16, or 20 m s−1.

The streamwise and spanwise velocities were simulta-
neously measured using a hot-wire anemometer. The an-
emometer was composed of a crossed-wire probe and a con-
stant temperature system. The wires were made of platinum-
coated tungsten, 5mm in diameter, 1.25 mm in effective
length, 1 mm in separation, 280 °C in temperature, and ori-
ented at ±45° to the streamwise direction. The calibration
was done before and after each of the measurements. We did
not measure the floor-normal velocity, which suffers from
mean shear and hence is less suited to studying vortex tubes
than the spanwise velocity.

The measurement positions were atx=12.5 m, where the
boundary layer was well developed. The 99% thickness, i.e.,
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the height at which the mean streamwise velocityU is 99%

of its maximum valueÛ, was 0.8 m. The displacement thick-

nesse0
ẑs1−U / Ûddz was 0.2 m. Hereẑ is the height for the

velocity Û [20]. The 99% thickness and displacement thick-
ness were independent of the incoming-wind velocity. Thus,
among all the measurements, the overall flow structure was
the same. The reason is that the Reynolds number for the
entire boundary layer was high enough.

We determined the measurement heightz so that the flat-
ness factor for the spanwise velocitykv4l / kv2l2 was close to
the Gaussian value of 3. The flatness factor was less than 3 at
small heights where the flow was affected by the surface
roughness. The flatness factor was greater than 3 at large
heights where the flow was affected by the fluctuation of the
interface to the outer laminar flow. We obtained the Gaussian
value of 3 at an intermediate height, where eddies with vari-
ous sizes and strengths filled the space randomly and inde-
pendently[21]. There the flatness factor for the streamwise
velocity ku4l / ku2l2 was different from 3 because the turbu-
lence was not isotropic at large scales.

The signal was low-pass filtered atfc=2–20 kHz with
24 dB per octave and sampled digitally atfs=4–40 kHz
with 16-bit resolution. To avoid aliasing, the sampling fre-
quency was set to be twice the filter cutoff frequency,fs
=2fc. The data length was 23107 points for the incoming-
wind velocitiesUi =4, 8, and 12 m s−1. It was 83107 points
for the incoming-wind velocitiesUi =2, 16, and 20 m s−1.

The energy spectra of the spanwise velocity are shown in
Fig. 1. We have used Taylor’s frozen-eddy hypothesis to con-
vert temporal variations into spatial variations in the stream-
wise direction. Throughout the energy spectra, the signal-to-
noise ratio is high.

The experimental conditions and flow characteristics are
summarized in Table I. The microscale Reynolds number
Rel ranges from 295 to 1258. We have obtained the smallest-
scale statistics from the spanwise-velocity gradient]xv in-
stead of the usual streamwise-velocity gradient]xu, by as-

suming the smallest-scale isotropyks]xvd2l=2ks]xud2l. This
is because, especially at small scales in strong turbulence, the
u component measured by a crossed-wire probe is contami-
nated with thew component that is perpendicular to the
plane of the two wires of the probe[22,23]. The v compo-
nent is free from such contamination. For the smallest-scale
isotropy, we have no direct evidence. The smallest-scale isot-
ropy still serves as a meaningful assumption, even if it was
not achieved, because our present results are then compa-
rable with those obtained in isotropic turbulence.

III. MODEL FOR VORTEX TUBES

The representative model for vortex tubes is the Burgers
vortex, an axisymmetric steady circulation in a strain field. In
cylindrical coordinates, the circulation and the strain field are
written, respectively, as

uQ ~
n

aR
F1 − expS−

aR2

4n
DG sa . 0d, s1ad

suR,uQ,uZd = S−
1

2
aR,0,aZD . s1bd

Heren is the kinematic viscosity. The circulation is maximal
at R=R0=2.24sn /ad1/2. Thus R0 is regarded as the tube ra-
dius.

Suppose that the axis of the vortex tube penetrates the
sx,yd plane at the points0,Dd. Thex andy axes are, respec-
tively, in the streamwise and spanwise directions. If the di-
rection of the tube axis issu ,wd in spherical coordinates, the
streamwisesud and spanwisesvd components of the circula-
tion flow uQ along thex axis are

usxd =
D cosu

R
uQsRd, s2ad

vsxd =
x cosu

R
uQsRd, s2bd

with

R2 = x2s1 − sin2 u cos2 wd + D2s1 − sin2 u sin2 wd

+ 2xD sin2 u sinw cosw. s3d

For the radial inflowuR of the strain field, the streamwise
and spanwise components are

usxd =
xs1 − sin2 u cos2 wd + D sin2 u sinw cosw

R
uRsRd,

s4ad

vsxd = −
x sin2 u sinw cosw + Ds1 − sin2 u sin2 wd

R
uRsRd.

s4bd

If the vortex tube passes close to the probesD&R0d and the
tube is not heavily inclinedsu.0d, the spanwise velocity is

FIG. 1. Energy spectrum of the spanwise velocity at Rel=295,
430, 655, 861, 1054, and 1258(from bottom to top). The wave
numberk is in units of m−1 instead of the usual rad m−1. The dotted
line denotes Kolmogorov’sk−5/3 law for the inertial range.
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dominated by the small-scale circulation flow[Eq. (2b)]. The
streamwise velocity is dominated by the large-scale radial
inflow [Eq. (4a)]. This situation is of our interest. The veloc-
ity profiles of vortex tubes withD&R0 andu.0 are nearly
the same[14]. If D@R0 or u@0, the tube signal is weak at
least in the spanwise velocity at small scales.

Since there are large-scale velocity fluctuations, a vortex
tube in actual turbulence does not necessarily pass the probe
along the mean streamwise direction[14]. This fact was
nevertheless not serious in our experiment. The incident
angle f of the vortex tube was not large, i.e.,kfl
.arctanskv2l1/2/Ud&10° for kv2l1/2/U&0.2 as in Table I.

IV. VELOCITY PROFILE OF VORTEX TUBES

The typical profiles for vortex tubes in the streamwisesud
and spanwisesvd velocities are extracted by averaging sig-
nals centered at the position where the absolute value of the
spanwise-velocity incrementuvsx+dxd−vsxdu is enhanced
above a certain threshold[16–18]. We set the scaledx to be
the sampling intervalU / fs. The threshold is set to be the

highest percentile for the absolute values of the velocity in-
crements. Thus 1% of them are used for the averaging. When
the velocity increment is negative, we invert the sign of thev
signal before the averaging. The results are shown in Fig. 2.

The threshold value for the enhancement of the velocity
increment has been determined with a compromise. If the
threshold is higher, the statistical uncertainty is more signifi-
cant. If the threshold is lower, the contamination with the
background flow is more significant. We nevertheless expect
that our following results are qualitatively independent of the
threshold if the fraction of the velocity increments used for
the averaging is&1%. They comprise the tail of the prob-
ability density distribution that is well above the Gaussian
distribution with the same standard deviation as shown in
Fig. 3 [24]. The only deficit is that the threshold is too high
for some weak vortex tubes. They are not considered here.

The u profiles in Fig. 2 are separated forusx+dxd−usxd
.0 andusx+dxd−usxdø0 atx=0 (designated asu+ andu−).
We have decomposed the individual profiles into the sym-
metric and antisymmetric components and have shown only
the antisymmetric components. The contamination with the
w component leads to a symmetric positive excursion in the

TABLE I. Summary of experimental conditions, flow characteristics, and parameters of vortex tubes. The kinematic viscosity reflects the
air temperature in the wind tunnel. The velocity derivative was obtained as]xv=f8vsx+dxd−8vsx−dxd−vsx+2dxd+vsx−2dxdg /12dx with
dx=U / fs.

Quantity Units Values for individual data sets

Experimental conditions

Incoming-wind velocity Ui m s−1 2 4 8 12 16 20

Sampling frequency fs kHz 4 8 16 24 32 40

Kinematic viscosity n cm2 s−1 0.144 0.145 0.145 0.147 0.150 0.149

99% thickness cm 78 80 80 79 79 79

Displacement thickness e0
ẑs1−U / Ûddz cm 20 23 23 23 22 22

Measurement height cm 35 35 30 30 25 25

Flow characteristics

Mean streamwise velocity U m s−1 1.59 3.08 5.83 8.81 11.1 13.8

Streamwise flatness factor ku4l / ku2l2 2.73 2.68 2.70 2.69 2.70 2.71

Spanwise flatness factor kv4l / kv2l2 3.03 3.03 3.00 3.06 3.01 3.02

Energy dissipation rate k«l=15nks]xvd2l /2 m2 s−3 0.0316 0.254 2.03 5.65 14.6 26.2

Streamwise velocity fluctuation ku2l1/2 m s−1 0.271 0.554 1.15 1.71 2.38 2.95

Spanwise velocity fluctuation kv2l1/2 m s−1 0.227 0.462 0.958 1.42 2.01 2.53

Kolmogorov velocity uK=snk«ld1/4 m s−1 0.0260 0.0438 0.0737 0.0955 0.122 0.141

Streamwise integral length Lu=e0
`kusx+dxdusxdl / ku2lddx cm 48.4 44.2 39.0 42.3 43.6 43.6

Spanwise integral length Lv=e0
`kvsx+dxdvsxdl / kv2lddx cm 7.76 7.08 7.06 6.23 5.79 5.92

Taylor microscale l=f2kv2l / ks]xvd2lg1/2 cm 1.88 1.35 0.991 0.889 0.788 0.740

Kolmogorov length h=sn3/ k«ld1/4 cm 0.0554 0.0331 0.0197 0.0154 0.0123 0.0106

Microscale Reynolds number Rel=kv2l1/2l /n 295 430 655 861 1054 1258

Parameters of vortex tubes

Radius R0 h 6.08 6.04 6.28 7.14 6.98 7.37

Circulation velocity V0 kv2l1/2 0.600 0.526 0.485 0.476 0.469 0.464

Circulation velocity V0 uK 5.23 5.55 6.31 7.10 7.73 8.37

Reynolds number Re0=V0R0/n 32 34 40 51 54 62

Clustering scale dx0 l 2.38 2.90 2.82 2.77 2.67 2.92

Probability density P0sld l−1 0.349 0.451 0.536 0.508 0.523 0.545
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u profile [23,25]. Such an excursion was seen in our previous
study [18,26]. The u profile averaged for vortex tubes is
antisymmetric(see Sec. III).

To ensure statistical significance, we have reduced the
sample size by a factor of 2 and redone the conditional av-
eraging. The velocity profiles do not differ from those in Fig.
2 by more than a line thickness.

For reference, we show thev profile (2b) of a Burgers
vortex withD=0 andu=0 in Fig. 2(dotted lines). The radius
R0 and the maximum circulation velocityV0 have been de-
termined so as to fit the observed profile around its peaks.
There our conditional averaging prefers vortex tubes with
D.0 andu.0 because such tubes have the strongest sig-
nals. Since the Kolmogorov lengthh is smaller than the
probe size in the streamwise directionl, we have assumed
that the measured velocityvmsxd is the true velocityvtsxd
averaged over the probe size[22]:

vmsxd =
1

l
E

−l/2

l/2

vtsx + x8ddx8 with l =
1.25 mm

Î2
. s5d

TheR0 andV0 values are shown in Table I. While the radius
R0 is several times the Kolmogorov lengthh, the circulation
velocity V0 is about a half of the root-mean-square velocity
fluctuationkv2l1/2 or several times the Kolmogorov velocity
uK [4,9–11,14,15,17–19].

The observedv profile is close to the profile of a Burgers
vortex [11,18,19]. We thus confirm the existence of vortex
tubes and their responsibility for small-scale intermittency at
high microscale Reynolds numbers. The observedv profile
has more pronounced tails than the profile of a Burgers vor-
tex. There should be a contribution from vortex tubes that are
heavily inclined to the streamwise direction withu@0 [18].

The u± profiles are dominated by the circulation flowuQ

of vortex tubes passing the probe at some distancesD.0
[Eq. (2a)] or with some incident anglesf.0 [14]. If the
radial inflow uR of the strain field were predominant, we

FIG. 2. Typical profiles for vortex tubes in the streamwisesud
and spanwisesvd velocities at Rel=295, 430, 655, 861, 1054, and
1258 (from top to bottom). The u profile is shown separately for
usx+U / fsd−usxd.0 andusx+U / fsd−usxdø0 at x=0 (designated
as u+ and u−). The positionx is normalized by the Kolmogorov
lengthh. On the ordinate, the unit scale corresponds to one-tenth of
the root-mean-square velocity fluctuationkv2l1/2. The v profiles of
Burgers vortices withD=0 andu=0 are shown with dotted lines
[see Eqs.(2b) and (5)].

FIG. 3. Probability density distribution of the absolute velocity
incrementuvsx+U / fsd−vsxdu at Rel=295, 430, 655, 861, 1054, and
1258 (from top to bottom). The distribution is shifted vertically by
a factor 103. The velocity increment is normalized by its standard
deviation, which is 0.00678, 0.0186, 0.0497, 0.0830, 0.124, and
0.167 m s−1 (from top to bottom). The arrows indicate the range of
the enhanced velocity increments used in our analyses, which share
1% of the total. The dotted lines denote a Gaussian distribution.
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would observeusxd.−ax/2 [Eq. (4a)]. This is not the case.
Theu− profile only has a somewhat larger amplitude than the
u+ profile. Unlike a Burgers vortex, an actual vortex tube is
not always oriented in the stretching direction
[9,10,18,19,27].

V. SPATIAL DISTRIBUTION OF VORTEX TUBES

The spatial distribution of vortex tubes on a one-
dimensional cut of a turbulent flow is studied using the prob-
ability densityP0 of the intervaldx8 between successive en-
hancements of the spanwise-velocity increment. The
enhancement is defined with the same threshold as in Sec.
IV. We show the probability density distribution in Fig. 4,
where the interval is normalized by the Taylor microscalel
in order to cover both the small and large intervals. The
statistical significance is less than that of the velocity profiles
in Fig. 2, but it is still sufficient for our analysis[28].

For intervalsdx8*5l, we successfully model the prob-
ability density with a sum of two exponential functions(dot-
ted curves):

P0sdx8d = c0 expS−
dx8

dx0
D + c1 expS−

dx8

dx1
D with dx0 , dx1.

s6d

The second term implies that the probability density distri-
bution has an exponential tail that appears linear on a semi-
logarithmic plot(dotted straight lines). This is characteristic
of the Poisson process of random and independent events
[29]. Thus the large-scale distribution of vortex tubes is ran-
dom and independent. The first term implies that, with de-
creasing interval, the probability density becomes enhanced
over that for the exponential distribution[6,8,16,18]. Since
the enhancement is significant below about the spanwise in-
tegral lengthLv, this is attributable to clustering of vortex
tubes below the energy-containing scale. It was actually
demonstrated in direct numerical simulations that strong vor-
tex tubes lie on the borders of energy-containing eddies[10].
The clustering scaledx0 is a few times the Taylor microscale
l (Table I).

With decreasing intervaldx8 below about the scaledx0,
the probability density becomes enhanced over our model
(6). The clustering of vortex tubes becomes significant. In
Table I, we show the probability density atdx8=l, which has
been normalized by the amplitude of the exponential tail.
The probability density at the smaller intervals is not so use-
ful because a very strong vortex tube could cause more than
one enhancement of the velocity increment.

VI. DEPENDENCE ON REYNOLDS NUMBER

Thus far we have obtained the parameters of vortex tubes,
i.e., the radiusR0, the maximum circulation velocityV0, and
the interval distributionP0. Their dependences on the mi-
croscale Reynolds number Rel are studied here. To extend
the Rel range, we also use velocity data from our previous
experiment of grid turbulence at Rel=105–329[18]. These
data are reanalyzed in the same manner as for our present
data. The results are summarized in Fig. 5, where quantities
are normalized by their values at Rel=430.

The tube radiusR0 scales with the Kolmogorov lengthh
asR0~h over the entire range of the Reynolds number[Fig.
5(a)]. This is the most significant scaling law among those
studied here.

The circulation velocityV0 scales with the root-mean-
square velocity fluctuationkv2l1/2 as V0~ kv2l1/2 at Rel
*400 [Fig. 5(b)]. Since this is not the case at Rel&400, the
scaling is achieved at high Reynolds numbers. Although the
velocity fluctuation is a quantity for large scales, vortex tubes
could be formed via shear instabilities on the borders of
energy-containing eddies[6,7,10], where a velocity variation
over a small scale such as the tube radius could be compa-
rable to the velocity fluctuation. The circulation velocity also
scales with the Kolmogorov velocityuK as V0~uK [Fig.
5(c)]. However, at Rel*400, this scaling is less significant
than the scaling with the velocity fluctuation.

FIG. 4. Probability density distribution of the intervaldx8 be-
tween vortex tubes at Rel=295, 430, 655, 861, 1054, and 1258
(from top to bottom). The probability density distribution is normal-
ized by the amplitude of its exponential tail(dotted straight lines),
and it is shifted vertically by a factor 10. The interval is normalized
by the Taylor microscalel. The dotted curves denote the results of
a least-squares fit with a sum of two exponential functions atdx8
=5l−25l [Eq. (6)]. The arrows denote the spanwise integral length
Lv.
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The scaling laws for the radiusR0 and the circulation
velocity V0 lead to the scaling law for the Reynolds number
Re0=R0V0/n that characterizes the circulations of vortex
tubes:

Re0 ~ Rel
1/2 if R0 ~ h andV0 ~ kv2l1/2, s7ad

Re0 = const ifR0 ~ h andV0 ~ uK. s7bd

These relations are from the definitions of the Reynolds
number Rel, the Kolmogorov lengthh, and the Kolmogorov
velocity uK as in Table I. The present result favors the former
scaling[Fig. 5(d)] rather than the latter[Fig. 5(e)] at least for
Rel*400. With an increase of the Reynolds number Rel,
vortex tubes have higher Reynolds numbers Re0 and are ac-
cordingly more unstable[10]. They would nevertheless sur-
vive long enough to be observable as distinct entities that are
responsible for small-scale intermittency. Turbulence is
known to be more intermittent at a higher Reynolds number
Rel [2].

For general vortex tubes, we do not necessarily expect the
scaling lawsV0~ kv2l1/2 and Re0~Rel

1/2. Weak vortex tubes
are not considered here because our velocity profiles were

obtained for enhancements of a velocity increment. Actually
in direct numerical simulations, the scaling lawV0~uK was
obtained when vortex tubes were identified as local minima
of the pressure[4]. The scaling lawV0~ kv2l1/2 was obtained
when vortex tubes were identified as enhancements of the
vorticity above a threshold[10].

The probability densityP0 at the intervaldx8=l appears
to increase as the Reynolds number increases up to Rel

.400 [Fig. 5(f)]. Above the Reynolds number Rel.400,
the probability density is constant. The clustering of vortex
tubes appears to become significant and then attain an
asymptotic state. There is a discontinuity between grid tur-
bulence at Rel&300 and boundary-layer turbulence at Rel

*300. The spatial distribution of vortex tubes is affected by
large-scale structures of turbulence, i.e., energy-containing
eddies. For large intervalsdx8@l, the probability density
distributions collapse to single curves according to the ex-
perimental configurations as shown in Fig. 6.

VII. CONCLUDING REMARKS

The streamwisesud and spanwisesvd velocities were mea-
sured simultaneously in rough-wall boundary layers with mi-
croscale Reynolds numbers Rel=295–1258. We have used
the velocity data to study vortex tubes, the most elementary
structures of turbulence.

We have extracted the typicalv profile for vortex tubes
(Fig. 2). The profile is close to the velocity profile of a Bur-
gers vortex. The radiusR0 is several times the Kolmogorov

FIG. 5. Dependence of tube parameters on Rel. (a) R0/h. (b)
V0/ kv2l1/2. (c) V0/uK. (d) Re0/Rel

1/2. (e) Re0. (f) P0sld. They are
individually normalized by the values at Rel=430. The filled circles
denote the data at Rel=295, 430, 655, 861, 1054, and 1258 from
our present experiment. The open circles denote the data at Rel

=105, 165, 225, 292, and 329 from our previous experiment of grid
turbulence[18].

FIG. 6. Probability density distribution of the intervaldx8 be-
tween vortex tubes in grid turbulence at Rel=105 obtained in a 3
30.830.8 m3 wind tunnel, grid turbulence at Rel=165, 225, 292,
and 329 obtained in a 183332 m3 wind tunnel, and boundary-
layer turbulence at Rel=295, 430, 655, 861, 1054, and 1258. We
normalize the probability density distribution by the amplitude of
its exponential tail. The interval is normalized by the Taylor micros-
calel. The data of boundary-layer turbulence are from our present
experiment. The data of grid turbulence are from our previous ex-
periment[18]. Among the data of boundary-layer turbulence, those
at Rel=295 yield the lowest probability density.
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length h. The maximum circulation velocityV0 is about a
half of the root-mean-square velocity fluctuationkv2l1/2. We
have also studied the probability density distribution of the
interval between vortex tubes(Fig. 4). The probability den-
sity is enhanced below about the integral length and more
significantly below about the Taylor microscale, reflecting
clustering of vortex tubes.

We have obtained the scaling lawsR0~h, V0~ kv2l1/2, and
Re0=V0R0/n~Rel

1/2. The small-scale spatial distribution of
vortex tubes is the same(Fig. 5). Since these properties do
not necessarily exist at Rel&400, they are achieved asymp-
totically at Rel*400. They are expected to be universal
among vortex tubes in turbulence at high Reynolds numbers.
To confirm this expectation, experiments at the higher Rey-
nolds numbers are desirable. Those at similar Reynolds num-
bers but under different experimental configurations are also
desirable.

The vortex tubes have been identified using enhancements
of a velocity increment above a threshold. Thus our results
are biased against weak tubes. The development of a method
to identify vortex tubes with various strengths is desirable
[19]. We nevertheless believe that our results are useful be-
cause strong vortex tubes play an important role in small-
scale intermittency. Their role in energy dissipation is also
expected to be important.
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